Heparin is among the most widely used medications in hospitalized patients, particularly for prophylaxis of deep vein thrombosis and pulmonary embolism. Unfortunately, in approximately 1 to 3% of patients receiving heparin therapy, an IgG-mediated immune response—known as Heparin-induced Thrombocytopenia (HIT)—has been reported. Furthermore, a small percentage of patients with HIT go on to develop thrombotic complications including stroke, limb amputation or death. The thrombi associated with HIT involve aggregation of large numbers of platelets called a “white clot.”

Early recognition and rapid treatment of HIT can reduce catastrophic thromboses resulting from irreversible aggregation of platelets known as the “white clot syndrome.”

PATHOPHYSIOLOGY

Heparin forms a complex with Antithrombin III that inhibits thrombin’s ability to convert fibrinogen to fibrin (see diagram). In HIT, the heparin molecules combine with an exogenous tetrameric protein, platelet factor 4 (PF4) which is seen as immunogenic. IgG is then produced by B-lymphocytes that respond to the “antigen” and also bind to the FcRIIb receptor on platelets. This binding induces platelet activation and aggregation through a positive-feedback mechanism triggering coagulation. These events can play out in either the venous or arterial circulation, often leading to fatal complications.

CASE REPORT

A 33-year-old African-American female with a history of uncontrolled hypertension, hepatitis C, HIV and end-stage renal disease presented to the emergency department with hypertensive urgency, headache and decreased vision in her right eye for one day. The patient was admitted and successfully treated for hypertension with IV labetalol and clonidine by mouth with resolution of symptoms.

As part of the hospital’s deep vein thrombosis and pulmonary embolism prophylaxis, the patient was initially started on heparin 5,000 units every eight hours subcutaneously. Her platelet count at admission was 198 x 10^3/mm^3. However, on the first day of admission, the patients platelet count had dropped 44% to 110 x 10^3/mm^3. By the fourth day of admission, the platelet count had dropped a total of 65% to 70 x 10^3/mm^3 (see point A on graph), and the heparin was discontinued after a total of 13 doses.

Heparin-induced antibodies were then found to be present, though no platelet clumping was noted in her peripheral smear to indicate thrombotic thrombocytopenic purpura. A constant infusion of argatroban was started at the recommended rate (see table). The calculated therapeutic range for aPTT in this patient was 50–80 seconds. The patient’s platelet count oscillated early in treatment and remained low (see interval B on graph) as she was found to be intermittently turning off the IV infusion pump several times per day. After counseling the patient and ensuring steady compliance with the infusion (see point C on graph), her platelet count then climbed to 133 x 10^3/mm^3 eleven days after beginning the infusion, the Argatroban was discontinued and she was discharged with a platelet count that was well within normal limits.

INTRODUCTION

Heparin-induced antibodies were then found to be present, though no platelet clumping was noted in her peripheral smear to indicate thrombotic thrombocytopenic purpura. A constant infusion of argatroban was started at the recommended rate (see table). The calculated therapeutic range for aPTT in this patient was 50–80 seconds. The patient’s platelet count oscillated early in treatment and remained low (see interval B on graph) as she was found to be intermittently turning off the IV infusion pump several times per day. After counseling the patient and ensuring steady compliance with the infusion (see point C on graph), her platelet count then climbed to 133 x 10^3/mm^3 eleven days after beginning the infusion, the Argatroban was discontinued and she was discharged with a platelet count that was well within normal limits.

PATHOPHYSIOLOGY

Heparin forms a complex with Antithrombin III that inhibits thrombin’s ability to convert fibrinogen to fibrin (see diagram). In HIT, the heparin molecules combine with an exogenous tetrameric protein, platelet factor 4 (PF4) which is seen as immunogenic. IgG is then produced by B-lymphocytes that respond to the “antigen” and also bind to the FcRIIb receptor on platelets. This binding induces platelet activation and aggregation through a positive-feedback mechanism triggering coagulation. These events can play out in either the venous or arterial circulation, often leading to fatal complications.

DISCUSSION

Current research indicates that “HIT should be suspected clinically in a patient who has received heparin as recently as 5 days previously (or longer) and who has a platelet count that has decreased to less than 150,000/mm^3... or has decreased by 50% or more below baseline values.”

Three clinical syndromes in the HIT spectrum exist. First, HIT-antibody spherocytosis may be used. Low-molecular-weight heparins (LMWH) are also contraindicated in patients who have anti-heparin antibodies. Patients who test seropositive for HIT antibodies but do not exhibit clinical thrombosis are the worst case scenario in the spectrum. Patients with HIT may be hospitalized with deep vein thromboses or bleeding. This case illustrates that catastrophic thromboses and hemorrhage can be avoided when heparin-induced thrombocytopenia is recognized early and treated appropriately. It is therefore essential for clinicians to recognize HIT by pro-actively monitoring platelet levels in order to avoid the “white clot syndrome” of HIT in hospitalized patients.

REFERENCES

4. B الصمام, M. S. A. R. B. R. T. (2000) 6.0 mg/kg infusion. 0.4 mg/kg bolus, then 0.15 mg/kg/hr for 14-20 hours. Renal 50%.

TABLE

<table>
<thead>
<tr>
<th>Anticoagulant</th>
<th>Mechanism of Action</th>
<th>Monitoring by</th>
<th>Therapeutic Range</th>
<th>Dosage</th>
<th>Elimination and half-life</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argatroban</td>
<td>Direct thrombin inhibitor</td>
<td>aPTT</td>
<td>1.5 – 3.0 times control</td>
<td>1.5 mg/kg bolus, then 0.15 mg/kg/hr</td>
<td>Renal 70%</td>
</tr>
<tr>
<td>Lepirudin (Refudan®)</td>
<td>Direct thrombin inhibitor</td>
<td>aPTT</td>
<td>1.5 – 2.5 times the aPTT ratio</td>
<td>50-80 seconds</td>
<td>Renal 90%</td>
</tr>
<tr>
<td>Bivalirudin</td>
<td>Direct thrombin inhibitor</td>
<td>aPTT</td>
<td>150-250 seconds</td>
<td>1 mg/kg bolus, then 0.5 mg/kg/hr</td>
<td>Renal 50%</td>
</tr>
<tr>
<td>Lepsin (Enveda®)</td>
<td>Direct thrombin inhibitor</td>
<td>aPTT</td>
<td>150-250 seconds</td>
<td>1 mg/kg bolus, then 0.5 mg/kg/hr</td>
<td>Renal 50%</td>
</tr>
</tbody>
</table>

DIAGRAM: Cascade showing action of Antithrombin III on clotting factors